Gluing formulas for determinants of Dolbeault laplacians on Riemann surfaces
نویسنده
چکیده
We present gluing formulas for zeta regularized determinants of Dolbeault laplacians on Riemann surfaces. These are expressed in terms of determinants of associated operators on surfaces with boundary satisfying local elliptic boundary conditions. The conditions are defined using the additional structure of a framing, or trivialization of the bundle near the boundary. An application to the computation of bosonization constants follows directly from these formulas.
منابع مشابه
Tau-functions on spaces of holomorphic differentials over Riemann surfaces and determinants of Laplacians in flat metrics with conic singularities over Riemann surfaces
The main goal of this paper is to compute (up to a moduli-independent constant factor) determinants of Laplacians in flat metrics with conic singularities on compact Riemann surfaces. We consider two classes of metrics: the Ströbel metrics and metrics given by moduli square of a holomorphic differential. For the latter case, if all conic angles equal 4π, our formulas essentially coincide with h...
متن کاملTau-functions on spaces of holomorphic differentials over Riemann surfaces and determinants of Laplacians in flat metrics with conic singularities
The main goal of this paper is to compute (up to a moduli-independent constant factor) determinants of Laplacians in flat metrics with conic singularities on compact Riemann surfaces. We consider two classes of metrics: the Ströbel metrics and metrics given by modulus square of a holomorphic differential. For the latter case, if all conic angles equal 4π, our formulas essentially coincide with ...
متن کاملThe Virasoro vertex algebra and factorization algebras on Riemann surfaces
2 Virasoro as a local Lie algebra on C 3 2.1 Dolbeault resolution of holomorphic vector fields . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Lie algebra extensions and the cocycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 A cocycle for LC . . . . . ....
متن کاملDeterminants of Laplacians and an Isopolar Compactness Theorem for Riemann Surfaces of Infinite Area
متن کامل
Tau-functions on spaces of Abelian and quadratic differentials and determinants of Laplacians in Strebel metrics of finite volume
2 Tau-function on spaces of Abelian differentials over Riemann surfaces 7 2.1 Spaces of holomorphic differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Variational formulas on Hg(k1, . . . , kM ) . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Basic Beltrami differentials for Hg(k1, . . . , kM ) . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Definition of...
متن کامل